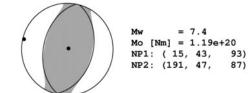
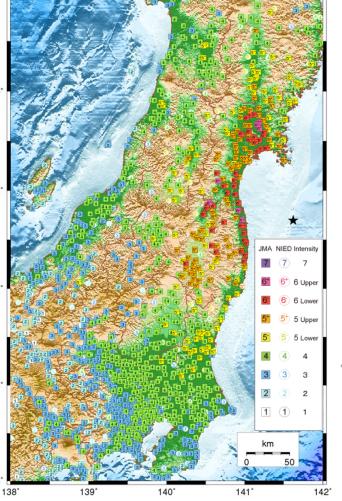

• • • • • • • • • • • • • • • • • • • •		
Origin Time	2022-03-16 23:36 (JST) 2022-03-16 14:36 (UTC)	
JMA Magnitude (M _{JMA})	7.4	1
Moment Magnitude (Mw)	7.3 (USGS, Hi-net), 7.4 (F-net)	Ī
Epicenter Region	East off Fukushima Pref.	
Depth	57 km	
Focal Mechanism	Reverse fault with a compression axis in a WNW-ESE direction	
Event Type	Intraslab earthquake in the Pacific plate	Ī
Maximum JMA Seismic Intensity	6 upper (Miyagi Pref., Fukushima Pref.)	4
Long-Period Ground Motion (LPGM) Class	Class 4 in Miyagi Pref. (See the figure below)	
Damage	3 dead, 22 seriously injured, 209 slightly injured, 3 houses partially destroyed, and 234 houses partially damaged.*1	3
Remarks	A Tohoku bullet train derailed between Fukushima and Shiroishi-Zao stations, but no one was injured.	
		_

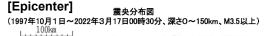
https://www.jma.go.jp/jma/press/2203/17d/oshirase.pdf

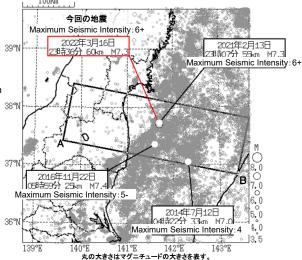

https://www.jma.go.jp/jma/press/2203/17a/kaisetsu202203170130.pdf

♦ LPGM JMA Seismic Intensity Map (See the next page for more information about the scale)

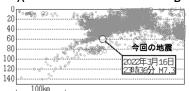

https://www.data.jma.go.jp/eew/data/ltpgm_explain/data/past/2022031623 3646/index.html

◆Moment Tensor

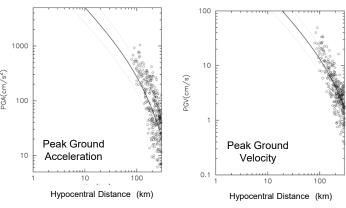


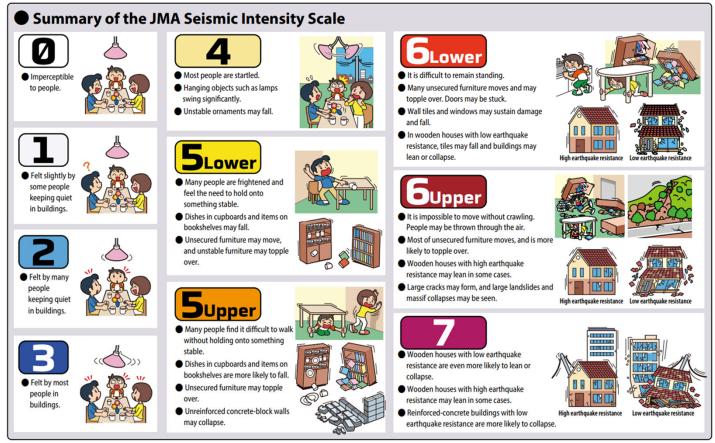

F-net: https://www.fnet.bosai.go.jp/event/tdmt.php?_id=20220316143500&LANG=en

♦JMA Seismic Intensity Map (See the next page for more information about the scale)


♦Epicenter and Hypocenter Distribution

[Hypocenter]




https://www.jma.go.jp/jma/ press/2203/17a/kaisetsu20 2203170130.pdf

◆ Attenuation Characteristics of Ground Motion

- O K-NET, KiK-net (Surface)
- Si and Midorikawa (1999): Intraslab earthquake, Mw7.3 (USGS, Hi-net)

^{*1:}https://www.fdma.go.jp/disaster/info/items/20220316fukushimakenoki12.pdf

JMA Intensity Scale for Long-Period Ground Motion

Long-Period (iround Motion(LPGM) class	Human perception	Indoor situation	ı
class1		Felt by most people in buildings. Some people are startled.	Hanging items such as lamps and blinds swing significantly.	
class2		Many people find it difficult to walk without holding onto something stable.	 Furniture on casters moves slightly. Items in cupboards and bookshelves may fall. Some of unsecured moves and may topple over. 	
class3		It's difficult to remain standing.	 Furniture on casters moves significantly. Some of unsecured moves and may topple over. Partition walls may crack. 	
class4		It's impossible to remain standing or move without crawling. People are at the mercy of shaking.	 Furniture on casters moves significantly and may topple over. Unsecured furniture moves and may topple over. Partition walls are likely to crack. 	

As Seismic Intensity data only partially express the strength of long-period shaking on higher floors, JMA is using a four-category intensity scale for LPGM to indicate the strength of shaking in high-rise buildings and the possibility of related damage.

The scale quantifies the effects of shaking in a high-rise building with a natural period of around 1.5 to 8 seconds (approx. 14 stories or more). There are four classes based on degrees of human perception and damage, such as toppling or shifting of furniture and fixtures. The conditions indicated are a rough guide, and actual damage may differ. Effects also vary with factors such as building/structural conditions and the duration of earthquake motion.